CIPRes Software Development/Architecture

Team leaders: Wayne Maddison (UBC)
 David Swofford (FSU)

Other active participants:
 Paul Lewis (UConn)
 David Maddison (Arizona)
 Mark Holder (FSU)
 Tandy Warnow (UT)
 Bernard Moret (UNM)
 Mark Miller (SDSC)
 Alex Borchers (SDSC)
 David Stockwell (SDSC)
 Terri Liebowitz (SDSC)
Overview of Architecture

Services

Server modules advertise their services

Client modules find and make use of those services

We define various services:
TreeRepository, TreeSupplier, TreeInference,
TreeEvaluator, ImageSupplier, MatrixSupplier, etc.
A communication protocol is specified (currently SOAP). Any CIPRes module must be able to “speak” this. Communication is mediated by Web Services standards (SOAP, WSDL, UDDI).
Overview of Architecture

Java, C++, etc., libraries act as glue between programs and the CIPRes module communication system

- Libraries find services, speaking to one another via low level communication protocols

- Libraries can communicate with programs via native C++ or Java objects like Trees (as opposed to their XML representation)

- When possible, libraries pass information between modules not via XML but via native memory structures (C++, Java) for speed
Different modes of communication may coexist
Overview (Example 1)

Offers services:
- TreeRepository
- TreeSupplier

Where to put trees?
Uses libraries to find advertised service to receive trees

Starts analysis; deposits trees

Where to obtain trees?
Uses libraries to find advertised service to supply trees

Starts analysis; deposits trees

acting as TreeRepository

acting as TreeSupplier

trees

deposits trees in database

deepth: CIPRes libraries

MrBayes, Phycas

database

watches progress

CIPRes libraries

Mesquite
Overview (Example 2)

DCM (Divide & Conquer)

Decomposition

Tree search for subset 1

Tree search for subset 2

Tree search for subset n

TreeInference

Merger

TreeMerger

Refinement

(random vs. optimal?)

TreeDecomposer

TreeRefiner

PAUP*, TNT, etc.
Other issues/plans

- **Notebook/snapshotting/journaling**

 Analysis commands and results stored permanently in database; analyses can be “replayed” using different data, updated service modules, etc.

- **Choice between alternate service providers**

 A system will be designed to “shop” for more specific services (preferences among otherwise equivalent providers & specific compatibility demands)

- **“RAD”-style analyses**

 Users can design analyses by choosing services from a palette and drawing arcs to illustrate the program flow. Once designed, these analyses can then be bundled as “double-clickable” applications.