Simulation, Modeling, and Benchmarks

U Penn: Junhyong Kim, Sampath Kannan, Susan Davidson
U Texas: David Hillis, Lauren Meyers
NC State: Spencer Muse
Florida State: Mark Holder
Yale: Paul Turner
Goal: Develop validated datasets of sufficient complexity and scale to realistically benchmark latest tree algorithms.

Or,

seriously kick some algorithmic b*%t
Rationale: Current approaches for tree method validation has some important limitations

- Too small scale: We want to provide trees of millions of taxa
- Too simple: Time homogeneous, simple rate mixture, independent site, simple stochastic tree generation model
- Everybody does their own thing, algorithms are not tested on the same dataset.
Problems and Approaches:

- Basic infrastructure
 - Data management support
 - Computational infrastructure
 - Benchmark Criteria, evaluation systems
- Benchmark data and tree
 - Data Simulators
 - Tree Simulators
 - Empirical Data

- Basic infrastructure
 - Simulation database
 - Parallelization
 - Tree comparison methods, protocols
- Benchmark data and tree
 - Multi-layered simulation models
 - Complex tree simulation
 - Experimental evolution using viral systems
Basic Infrastructure (yr 1 and 2): Simulation Database
Simulation and Data Access

Simulators

Character Evolution
- HyPhy
- Micro-evolution
- Others

Tree Topology
- Pure Birth
- Birth-Death
- Empirical Fit
- Others

Others
- Tree/Char Combined
- Experimental Evolution
- Virtual Cell
- etc

Database

Model Characterization

Model Sampling

Taxon Sampling

Data Subset with Associated Subtree

Format Translators

PAUP*, etc
Database Performance: Constant or Linear Time Queries

Select 20 fixed taxa from tree of size t (100 to 600)

Select 20 random taxa from tree of size t (100 to 600)

Implemented tree-based taxon sampling query
Benchmark Data: Multi-layered simulations

- Key molecule simulation (Muse, Hillis)
- General mutation simulation (Kim)
- Micro-Macro simulation (Kim, Meyers)
- Experimental viral evolution (Turner)
• Key molecule simulation (Muse, Hillis, Holder)
 - Estimate statistical parameters for real molecules (e.g., rbcL) using HyPhy, extend model family to include more discrete rate distribution and positional dependencies, and finally generate a very large tree of 10^6~10^7 taxa using the key molecule models as its basis.

• General mutation simulation (Kim)
 - Incorporate structural constraints, indel, functional constraints, etc. using a simulator based on edit mutations. A set of edit operators are implemented, such as stem-loop edit, each of which operate on evolving strings with a characteristic wait time.
General mutation model based on *E. coli* ssu rRNA (~1.5kb). 99-taxon beta-splitting model tree, 9 different rates, 50 replicates, ClustalW default alignment.

![Graph showing symmetric difference vs. P distance for E. coli ssu rRNA and Standard JC models.](Image)
- **Micro-Macro simulation model** (Meyers, Kim)
 - Generate a population of molecules incorporating a fitness model and speciation process based on RNA folding. Fitness from (1) similarity to known 16S RNA (~67k seqs); (2) similarity to known 16S structure (~200 crystal structure); (3) folding stability

- **Experimental viral evolution** (Turner; non-ITR funding for empirical work)
 - Use the RNA bacteriophage phi-6 system to generate an experimental phylogeny (~64-taxon tree with host switching and horizontal transfer)
ssu RNA micro-evolution simulation:

200 generation simulation with population size 1000 per species, speciation when the sequence best matches a different ssu RNA in database, indel/point mutation model
Cyberinfrastructure for Phylogenetic Research

- Multi-platform simulation database
- HyPhy parallelization
- Comparison statistics and protocol
- Key molecule simulation (Muse, Hillis)
- General mutation simulation (Kim)
- Micro-Macro simulation (Kim, Meyers)
- Experimental viral evolution (Turner)

Refinement Stage

year 2

year 3